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Imaging  Systems for Planetary Missions 

• Compromise between desired science and limited resource allocations 

Spatial/spectral coverage and resolution, SNR 

  vs. 

Cost, mass, power, envelope and data rate 

• Pushbroom imagers use spacecraft orbital motion to build up an image over 
long or multiple exposures 

— Detector arrays may use time delay integration (TDI) to achieve long effective 
integration times 

— Highly beneficial for limited ambient lighting or scenes with low contrast 

• This paper summarizes features of 

various pushbroom imagers built by 

Ball Aerospace  

• Includes technical trends that are 

pushing capabilities to new levels 

HiRISE image of MER rover Opportunity perched 

on rim of "Santa Maria" crater 
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Key Planetary Imager Performance Requirements 

• Spatial resolution well below 1 meter 

— Resolve surface features of scientific 
interest 

— Observe key time variability on small 
spatial scales such as recurring slope 
lineae (RSL) 

— Recognize surface hazards such as rocks 
and slopes 

— Landing site selection and surface 
operations planning 

• SNR > 50  

— Usually sufficient to reveal morphology 
such as scarps, lineaments or strata 

• SNR > 100  

— Compositional information from multi-
band color images 

— Scene content in shadows  

— Low contrast images, such as seen 
through Mars’ dusty atmosphere 

Oblique View of Warm Season Flows in Newton Crater 
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Space-Based Pushbroom Imagers Developed at Ball 

• High-performance imagers for both planetary and Earth-orbiting missions 

— Illustrates the range of the design space 

• High Resolution Imaging Science Experiment (HiRISE) 

• High resolution Stereo Color Imager (HiSCI) –  achieved PDR-level design only 

• QuickBird(QB) & WorldView(WV)  

• Ralph-Multispectral Visible Imaging Camera (MVIC)  

• Operational Landsat Imager (OLI) 
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Instrument Heritage – HiRISE on Mars Reconnaissance Orbiter 

• Launched in August, 2005 

— In 2nd extended mission 

• Largest imager orbiting another planet 

• Completed more than 28,000 observations 

• Returned >60 Tbits of data 

• 25 cm ground sample distance (GSD) at lowest 
MRO altitude 

• Up to 128 TDI stages 

• By taking images on different orbits, HiRISE is 
able to collect stereo data that can be 
converted into 1 m/post digital terrain models  

• Surprising result from HiRISE - extent of 
seasonal variations observed, such as 
avalanches, vents & fans and RSL 

• Successfully imaged Phoenix and Curiosity 
during critical EDL sequences & on surface 

 

DTM of the MSL Rover Landing Site in Gale Crater 

Polygons on Defrosting Dunes, example 

of Mars seasonal variability observed by 

HiRISE 
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HiRISE Camera Installed on MRO 
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Spacecraft Structure 
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Instrument Heritage – HiRISE Meets Critical Resolution Requirement 

Victoria Crater image demonstrates HiRISE ability to resolve 1-m hazards 



Page 8 

Instrument Heritage – HiSCI Design for Trace Gas Orbiter (TGO) 

• Completed instrument PDR 

— Extended effort allowed post-PDR design of 
servo & controller board and focal plane 
electronics (FPE) 

— Wavelet compression standard implemented 
in FPE 

• Designed to acquire the best-ever color and 
stereo images over significant areas of Mars 

— HiSCI would exceed by >20x the color and 
stereo coverage of Mars per year by HiRISE  

• Key design features: 

— Four colors across entire swath width 

— Bi-directional TDI capability – up to 64 stages 

— Yaw rotation drive with boresight offset 

• Benefits: 

— Ability to align the TDI array from an arbitrary 
yaw orientation   

— Collect stereo image pairs within an orbital 
pass using a single instrument mechanism 

The HiSCI instrument design was a joint 

effort between Univ. of Arizona, Ball Aerospace 

and Univ. of Bern (Switzerland). 

 

Concept of operations for stereo image pair 

collection in a single orbital pass 

Yaw rotation mechanism 
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Instrument Heritage – Ralph on New Horizons Spacecraft 

• Launched in January 2006; arrives Pluto in 2015 

• All-aluminum off-axis telescope construction 

• Dichroic beamsplitter separates Vis-NIR from 

SWIR wavelengths for two focal planes: 

— Multispectral Visible Imaging Camera (MVIC) 

— 6 CCD arrays with 32 TDI stages 

— Also includes a frame transfer CCD 

— Linear Etalon Imaging Spectral Array (LEISA) 

— Focal plane (<130 K) and electronics from GSFC 

• Instrument support electronics provided by SwRI 

 

Ralph/MVIC Images of Io 

Ralph/MVIC composite image of Jupiter 

http://pluto.jhuapl.edu/gallery/sciencePhotos/pics/tvashtar_deposit_color.png
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Landsat Data Continuity Mission – Operational Landsat Imager (OLI) 

• Planned launch in early 2013 

• Earth orbiting imaging radiometer with a 

four-mirror unobscured telescope 

•  Cooled focal plane includes hybrid SiPIN 

and HgCdTe detectors mounted on a single 

CMOS ROIC 

• Nine filters covering the visible to SWIR 

spectral bands 

• From an altitude of 705 km, the GSD is 15 m 

for the panchromatic band and 30 m for the 

other bands 

• Includes a calibration system incorporating 

built-in lamps, shutter and solar diffuser. 
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Key or Enabling Technologies 

• Detectors 

— Most heritage visible–NIR imagers have used CCD detectors  

— CMOS (Complementary Metal-Oxide Semiconductor) arrays have now achieved 

performance approaching that of CCDs in some applications 

— Greater radiation tolerance  

— Simpler integration of the detector with supporting electronics 

— CMOS sensor-on-a-chip (SOC) includes built-in drive, readout and processing electronics 

— Focal plane power supply is greatly simplified 

— Very low power dissipation and fewer power supply voltages 

— Hybrid arrays allow optimization of the detector QE 

— Signal integration through on-chip or off-chip time delay integration (TDI) 

• Telescope Design 

— Optimize the over-sampling ratio or ‘Q’:  Q = λ FN/pixel pitch 

— Q<0.8 for radiometers and Q>0.8 for imagers 

• Light-weighting the instrument 

— Advances in primary mirror construction and silicon carbide telescope structures 

— Greater use of low power, more capable field-programmable gate arrays, analog-to-digital 

converters and CMOS image sensors 



Page 12 

Image Motion Compensation & Stabilization 

• Very high resolution imagers (< 1 µrad/pixel) require quiet spacecraft 

• May be achieved through passive or active vibration isolation 

• Post-processing of images using attitude time sequences and overlapping pixels from the 
staggered detector arrays 

• Image Stabilization May Be Required to Achieve Resolution Significantly Better than HiRISE 

• Ball Fast Steering Mirror (FSM) located at fold mirror position can provide stabilization 

— Requirements 

— Size ~ 75 mm x  30 mm 

— Very small range of travel ~ 10 µradians 

— ~ 1000 Hz bandwidth 

— ~ 0.1 µradian repeatability & jitter 

 

• Clear aperture: 45 mm diameter 

• Closed loop bandwidth: up to 2,800 Hz 

• Optical travel:  up to  2.2 deg in two axes 

• Resolution: 0.2 to 10 rad depending on 

travel 

• Acceleration: >5,000 rad/sec2 

• Size < 51 x 61 x 36 mm 

• Weight < 0.25 kg 

 

Ball Model BSM 45 

Developed for  

German Space Agency 

Laser Communication 
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Data Compression 

• Most limiting constraint on high-resolution imaging of planetary surfaces is 

reduced downlink bandwidth for science data 

— Dependant on range to Earth  

• Volume of image data  produced can be staggering. 

— Single maximum-size HiRISE image is 28 Gbits and requires 2.6 hours to transmit 

to Earth at nominal 3 Mbits/sec rate 

• Pixel binning used by HiRISE to increase SNR and reduce number of pixels 

contained in images 

• Ball developed an implementation of the CCSDS compression standard using 

wavelets 

— Can be incorporated into focal plane electronics or instrument control electronics 

• Compression demonstrated in laboratory with focal plane subsystem 

development unit  
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Future Imagers 

• Future planetary science missions will require imagers with improved spatial 

resolution, sensitivity and coverage 

• Designed for challenging environments 

• Desirable features of such instruments include: 

— 1. Full color coverage over the entire image area 

— 2. Bi-directional TDI (or equivalent) to facilitate stereo coverage and ease 

operational requirements 

— 3. On-board lossy and lossless compression 

— 4. Higher resolution or “hyper-resolution” 

Sub-meter resolution from orbit is readily achievable.  HiRISE has set the 

standard and raised expectations for future narrow angle planetary imagers. 

HiRISE FPA 

3-color coverage only in center 
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Backup Slides 
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BHRC 60 Camera on QuickBird (QB) & WorldView (WV) 

• Both Earth imaging spacecraft use 
standard Ball High Resolution Camera 
(BHRC 60)  

• Pushbroom instrument is capable of 
imaging a strip of the Earth’s surface 
between 15 and 34 km wide depending on 
orbital altitude.   

• Includes un-obscured three-mirror 
anastigmatic telescope and a focal plane 
array with support electronics 
— Including data compression 

• One-time deployable aperture cover 
protects the instrument during launch and 
early mission operations 

• Calibration lamp provides on-orbit 
performance tracking capability of the focal 
plane array. 

• Because these instruments were designed 
for earth orbit, minimal effort was placed on 
weight reduction.  

• Operates in the visible and NIR bands 

• GSD ~ 0.5 meters panchromatic and 
2.5 meters multispectral 

• The instrument was designed for a 5-
year mission lifetime.   
— QB spacecraft & camera are in their 

11th year of normal operations 

 

 

BHRC 60 instrument for QuickBird spacecraft. 
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Raw Image Captured in Lab with FPS EDU 

17 
Source photograph was attached to a Ball-developed belt scanner 
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Radiation Tolerance 

• Driving constraint of certain candidate deep-space missions is the extreme 
ionizing radiation environment 

• Radiation affects optics, electronics and focal planes 

— Thermal control surfaces 

• Radiation modeling and shielding analysis capabilities are key to finding the 
shielding design with the lowest possible mass and selecting appropriate 
components  

• Radiation modeling and shielding analysis capabilities are key to finding the 
shielding design with the lowest possible mass and selecting appropriate 
components  

• Ball has developed modeling tools and design capabilities as demonstrated 
on various programs including HiRISE, OLI, MVIC, Kepler and Deep Impact 

• Ball personnel operate a radiation test facility, the InfraRed Radiation Effects 
Laboratory (IRREL) at the Air Force Research Laboratory (AFRL).  

— Experienced in designing focal plane test equipment and understanding the 
results of such tests 


