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« Seismology

* Ground-Penetrating Radar

Geophysical Methods

Grant and West, 1968

Trn  Souice

— Gold standard for internal
structure, esp. global.

— Not very sensitive to water.

— Good structural resolution
— Limited investigation depth. I~ /)

- |\/|or_e sensitive to water. % K_’\, ! \,Licmumr
Inductive EM \ ~

— Very sensitive to water. i fid ==

— Very high sensitivity to selected |, Secondary field— — — — —~
properties for specialized
investigations.

— Large exploration depth.
— Poorer resolution.
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Skin Depth (km) = 0.5 \p/f = 0.5 VT/o
f = frequency, Hz; T = period, sec
p = resistivity, Q-m; o = conductivity, S/m



DEEP SOUNDING (kms to >100 km)

Natural-Source Electromagnetics
Magnetotellurics, Geomagnetic Depth Sounding

Target v Frequency

Water Table (kms) MmHz — kHz

Habitability, geothermal gradient (joint with heat flow) | solar wind, lightning
Crust (tens of km) mHz — Hz

Differentiation history (joint with seismology) solar wind

Lithosphere (> 100 km) uHz (diurnal) to mHz

Thermal state (joint with seismology, heat flow) ionosphere, solar wind




Mars Groundwater is a Near-ldeal EM Target

Resistor (7 km) — Conductor (1 km) - Resistor

Fig. 1: Mars MT Response

Grimm, 2002
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* Dry, very resistive cryosphere over saline, conductive groundwater
« EM discerns groundwater over wide frequency band



Sensors

« Sensor package Is
essentially a classical
space-physics
experiment operated on
the ground.
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UCLA FGM
 Magnetometers (RStiangewely)

— Fluxgates < 1 Hz, THEMIS SCM Roux et al.

Induction (Search Coils)
>1Hz

 Electrometers

— Response to near DC
under galvanic coupling;
capacitive coupling
requires high-impedance
preamplifiers, circuit
shielding and guarding.

10 cm

Balloon Electrode (top) and Ballistically Deployed
Ground Electrode (bottom); G. Delory



EM Sounding: Implementation

E1 (ballistic)

E2 (ballistic)

Electronics

Generalized Lander

Lunette Lander (JPL)
PI. C. Neal, Notre Dame



INTERMEDIATE SOUNDING (10s m to few km)

Controlled-Source Electromagnetics
Time-Domain EM, Surface Nuclear Magnetic Resonance
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DIKE CONFINED
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Launcher Assembly:
Prototype

Grimm et al., 2009

Launcher Assembly:
Flight Design







SHALLOW SOUNDING (m to 10s m) :

Controlled-Source Geoelectrics
Dielectric Spectroscopy

« Surface electrode array

* Inject |, measure V amplitude + phase,
convert to conductivity + permittivity. |« /-

 Investigation depth proportional to S
electrode spacing: use multielectrode
array to generate 2D cross-section at
fixed location.
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Dielectric Spectroscopy Distinguishes
lce and Adsorbed Water

Fine-Grained Sand JSC Mars -1 Smectites, 3 ML
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 |ce relaxation + DC conductivity dominate in sands
* Broadband dispersion dominates in clays

« Martian regolith likely between sand and JSC-Mars-1.

— Assess H,O content and state to few % accuracy, ~1%
threshold.

— Complements neutron spectroscopy and GPR



Biogeophysics
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 Living cells display several polarization mechanisms under
applied electric fields.

 Electrical properties through life cycle of microbial colonies
have been extensively studied in laboratory columns.

« Substantial investment by DOE, hydrocarbon industry in
using biogeophysics for cleanup monitoring.

« Use on Mars to assess microbial activity beneath few meters
of irradiated and oxidized regolith.



Conclusions

Low-frequency EM better than GPR for investigation to
km depths and beyond.

Natural-source methods require minimal resources and
have greatest investigation depth (kms — 100 km)

— Groundwater, crust, lithosphere.

Large controlled source (200-m loop) optimal to assess
shallower groundwater (10s m to few km).

— Time-domain EM, Surface NMR

Small controlled source (several-m electrode array)
measures both conductivity and permittivity to depths of
meters.

— Distinguish ice from adsorbed water at percent levels.

— Detect microbial activity.



