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» Why Oxygen? We need to measure the dry air column In order to estimate the dry mixing ratio of CO, for ASCENDS.

» Meteorological models can provide surface pressure but there are concerns about global coverage and co-location of the measurements.

» The GSFC Integrated Path Differential Absorption (IPDA) lidar uses a tunable fiber laser, doubling crystal, and flight qualified single photon
counting detectors to measure Differential Optical Depth (DOD) at 765 nm for the dry air column.
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An alternative Isotope Line

 Why consider an isotope line? The narrow bandpass filter
and large scanning range severely distort the O, lineshape
making post-processing calibrations and subsequent
retrievals difficult. An O, isotopic line at 764.93 nm was
identified and tested as a possible candidate.
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Open Path Test at GSFC
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GSFC O2 Airborne IPDA Lidar Surface pressure from meteorological analyses
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O2 LIDAR Summary

» Meteorological analyses and models need to be
validated by independent surface pressure
measurements at the relevant spatial scales.

* Impact of co-location of the meteorological models and
ASCENDS CO, observations needs to be evaluated.

* O, LIDAR Improvements:

— Increase laser energy to ~ 2-4 mJ for space.
» Increased laser energy by a factor of 5-6 since 2013 with new amplifier

* Improve dynamic range
» Increased dynamic range by a factor of 8 since 2013

« Control Bias errors

» Several hardware and software changes were implemented to control bias
errors and improve stability.
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v' The GSFC O, IPDA lidar has flown on NASA’s DC-8 airborne laboratory since 2010 and the retrievals track atmospheric models over a wide range
of topography and ground cover from altitudes of 3 km and 13 km.

v Our total random error is currently 8-10 mbar (with 60 secs averaging) and is limited by the laser energy and receiver dynamic range.

v We increased the dynamic range of the receiver for the 2014 flights by a factor of ~ 8 but had a laser power supply failure in our engineering flight.
The lidar was operational for only one flight in 2014.

v Following the 2014 flights we have increased the laser pulse energy by a factor of 6. We anticipate the random error to be reduced further.
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