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Introduction: More than ten years of work in our 

and others’ research groups have been dedicated to 
development of robust standards, data processing, and 
calibration tools for laser-induced breakdown spectros-
copy (LIBS). Here we summarize major considerations 
relating to LIBS calibrations as we and others have 
encountered them, with a focus on our group’s work. 

Calibration suites. As with most analytical tech-
niques, the number of standards and their elemental 
compositions must represent the magnitude of varia-
tion in the unknowns to be analyzed. This is particular-
ly important for LIBS because matrix effects (largely 
arising from interactions within the plasma) have a 
first order effect on peak intensities, especially for light 
elements. Currently the largest set of LIBS calibration 
data on rocks comes from a suite of 2883 rock and 
mineral powders acquired in our laboratory [1], each 
shot 30 times at >5 locations using 3 different laser 
powers. Included in this suite are 320 samples consist-
ing of 8 rock matrices doped with Ni, Zn, Cr, Mn, Co, 
Rb, Sr, Y, Zr, Ce, La, Se and Pb in concentrations 
ranging from 10 ppm to 10 wt%. Preliminary analyses 
suggest that a significant improvement in prediction 
accuracy results from such a broad training set. 

Laser Power. Work by [2] used the ratio of inten-
sities of the Si II line at 644.7 nm against that of neu-
tral Si at 288.2 nm to demonstrate that the plasma tem-
perature recorded in Mars ChemCam spectra is varia-
ble. This effect can be reproduced in the laboratory as 
well, where even under ideal conditions, the laser 
power on target has some variability. Because the pop-
ulation of species and their ionization states is tem-
perature-specific, it is critical for LIBS calibration data 
to be collected over a range of plasma temperatures 
that spans those used in the instrument of interest.  

Normalization. LIBS data require normalization 
for comparisons among conditions, data sets, and in-
struments, but the optimal method for this is still being 
investigated. The ChemCam team [3,4] and most 
workers normalize to the total intensity on each of the 
three spectrometers. Some workers [5] have suggested 
that other types of normalization, such as to the magni-
tude of the continuum or to specific spectral lines (e.g., 
C at 247.9 or 658.0 nm or O ca. 777.2 nm) may be 
required for analysis of trace elements. 

Continuum removal. There is as yet no consensus 
on the best practice for continuum (baseline) removal 
in LIBS spectra. We have recently [6] examined the 
causes, effects, and optimization of continuum removal 

in LIBS from geological samples. Nine previously 
published methods for baseline subtraction generally 
produce equivalent prediction accuracies for major 
elements after optimizing their adjustable parameters. 
Ideally, these parameters should be determined sepa-
rately for each variable. We proposed a new technique 
for custom baseline removal (BLR) [7] that significant-
ly improves prediction accuracy over existing methods 
across varying geological data sets, instruments, and 
analytical conditions. The current practice of using 
generalized, one-method-fits-all-spectra baseline re-
moval results in poorer predictive performance for all 
methods. The extra steps needed to optimize baseline 
removal for each predicted variable are shown to be 
well worth the additional computations required. 

Angle of incidence. Spectral variability due to 
changes in collection geometry is typically ignored, 
despite work [8,9] showing that differences in orienta-
tion of continuum and emission lines could complicate 
the practice of normalization. So we [10] have tested 
results of varying ablation and collection angles from 
0-60° on LIBS spectra of glasses and rocks with com-
positions from basalt to rhyolite. We varied ablation 
and collection angle together as well as separately. 
Summed spectral intensity increases as ablation or 
collection angle approaches normal to the standard 
surface. Spectral intensity of the fitted continuum var-
ies more with ablation or collection angle than spectral 
intensity of the emission lines. Most importantly, re-
sults show that an additional analytical uncertainty of 
>30% is added to LIBS errors if the ablation angle 
onto the target surface is unconstrained or unknown. 

Univariate vs. multivariate analyses. Analysis 
techniques for LIBS data fall in two categories. Uni-
variate analyses use the intensity of a single peak (or 
peaks) to determine concentration using a calibration 
curve relating those two variables, but they suffer 
greatly from the matrix effects mentioned above. The 
alternative is multivariate analysis, generally partial 
least-squares (PLS), which is currently used in tactical 
activities for ChemCam [3]. We and others [11-16] 
have worked to find ways to improve upon PLS, either 
by applying more modern methods or through novel 
approaches to data preprocessing; 10-30% improve-
ments in prediction accuracy result depending on the 
element predicted and the training set used.  

We have recently [17] investigated the issue of 
univariate vs. multivariate prediction accuracy using 
1356 spectra from 452 geologically-diverse samples, 
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the largest suite of LIBS rock spectra ever assembled. 
Univariate predictions are by far the least accurate, 
regardless of the region of channels/wavelengths cho-
sen and the prominence of the selected emission lines. 
The best wavelength region choice for any given uni-
variate analysis is an inherent property of each specific 
training set that cannot be generalized. In comparison, 
multivariate analysis using PLS almost universally 
outperforms univariate analysis, producing results that 
improve in accuracy by 63% for major elements and 
3% for minor elements. This difference is likely a re-
flection of signal to noise ratios, which are better for 
major elements than for minor elements, and likely 
limit their prediction accuracy by any technique. Mask-
ing out channels to focus on emission lines from a spe-
cific element [17] worsens prediction accuracy for 
major elements but is useful for minor elements with 
low signals and proportionally much higher noise; use 
of PLS rather than univariate analysis is still recom-
mended for the elements tested, which included Si, Al, 
Ti, Fe, Mg, Ca, Na, K, Ni, Mn, Cr, Co, and Zn [17].  

Components in PLS Models. A key parameter of 
models like PLS is the number of components used. In 
a manner analogous to choosing the polynomial order 
in a multiple regression model, the fewest possible 
number of components should provide the most gener-
alizable prediction model. For this reason, the number 
of components in LIBS PLS models is usually held to 
be <12 [e.g., 3,4]. Tests using a dataset with 1356 
LIBS spectra [18] showed that after increasing the 
search range to include up to 50 components, predic-
tion accuracy improved in 30.8% of cases, stayed the 
same in 57.0% of cases, and became worse in 12.2% of 
cases. This implies that the complex interactions re-
sulting from variation in elemental composition pro-
duce a system with an intrinsic dimensionality larger 
than 12 components, so use of predictive models with 
a larger numbers of components is justified. The fact 
that model performance converges on <50 components 
indicates the compressibility of LIBS data in general. 

Calibration Transfer. We have learned that LIBS 
data are extremely sensitive to instrumental differences 
as well as all the factors discussed above. Machine 
learning provides tested techniques for resolving dis-
crepancies among datasets from different instruments, 
a task known as calibration transfer (CT). For example, 
CT can be used to correct for differences found be-
tween spectra of deployed extraterrestrial instruments, 
like ChemCam, and Earth-based laboratory facilities.  

Using a latent variable CT method, we showed that 
the predictive accuracy of major elements like CaO 
can be improved up to 60% [19]. CT can also be used 
to align and aggregate suites of spectra with a small 
number of common samples, allowing better models to 

be built with combined data sets. With a linking set 
size >10 samples, models trained on a suite of data sets 
aligned with piecewise direct-standardization (PDS) 
were more generalizable with lower prediction error 
[20] than those of the individual data sets. Unfortunate-
ly, PDS requires the differing instruments to share the 
same sampling wavelength range and frequency and 
cannot correct for larger differences.  

Our group has introduced a novel framework for 
CT based on recent advances in the field of convex 
optimization [21]. A customizable CT loss function is 
constructed using a series of penalty terms that target 
specific behaviors, spectroscopies, and task types. It is 
optimized using alternating direction method of multi-
pliers capable of transferring multiple data sets with 
millions of samples and thousands of channels. We 
have introduced a framework for CT that does not re-
quire any overlapping subset of samples [22]; it aligns 
disparate data sets by embedding samples in a shared 
low-dimensional latent-space to preserve their local 
geometric structures. This is effective when data sets 
are large but the overlapping subset is small or absent, 
though overlapping subset CT methods are preferred. 

Future Work. Although much has been done to 
improve accuracy of LIBS as a chemical analysis tool, 
several issues remain. These include effects of une-
ven/porous surfaces/grain size, problems relating to 
prediction of trace and light elements, and experi-
mental factors such as laser stability/power distribu-
tion. As these are studied, the usefulness of LIBS in 
planetary exploration will continue to improve. 
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