Overview

On this program, Creare will develop and demonstrate an innovative cryocooler that produces refrigeration at temperatures of 30 to 70 K and rejects heat at a temperature of 150 to 210 K with extremely high efficiency. The heat rejected can be absorbed by an upper stage cryocooler or rejected to space through a small cryo-radiator.
The demonstration system will include a combination of new and existing components. The Phase II testing will be structured to achieve a TRL of at least 5, and will include cryogenic performance testing and launch vibration testing. The cryocooler would be space-qualified during a follow-on Phase III project.

System Specifications

- Net refrigeration: 300 mW at 35K
- CCE Input power: 20 W at 28 VDC
- Cryo-compressor AC Input power 8.9W

Efficiency: 11\% of Carnot

- Total mass: 6.2 kg
- TMU: 2.8 kg
- CCE: 1.4 kg
- Cryo-Radiator: 1.0 kg
- Misc: 1.0 kg
- Radiation tolerance
- 300 kRad at parts level
- 0.125 in . aluminum shel
- Radiator area: $0.8 \mathrm{~m}^{2}$ necessarily reflect the views of NASA.

Conceptual System Layout

Cryocooler Control Electronics (CCE)

Single Stage Reverse Brayton Thermodynamic Cycle

Demonstration System

Potential NASA Applications

Future satellites, probes and astronomical observatories utilizing superconducting bolometers, and infrared, far infrared, submillimeter and X -ray detectors.

