High-Performance Pushbroom Imagers for Planetary Missions

J. Bergstrom & R. Dissly Ball Aerospace & Technologies Corp.

International Workshop on Instrumentation for Planetary Missions (2012) October 10, 2012

Ball Aerospace & Technologies Corp. Agility to Innovate, Strength to Deliver

Compromise between desired science and limited resource allocations
Spatial/spectral coverage and resolution, SNR

VS.

Cost, mass, power, envelope and data rate

- Pushbroom imagers use spacecraft orbital motion to build up an image over long or multiple exposures
 - Detector arrays may use time delay integration (TDI) to achieve long effective integration times
 - Highly beneficial for limited ambient lighting or scenes with low contrast
- This paper summarizes features of various pushbroom imagers built by Ball Aerospace
- Includes technical trends that are pushing capabilities to new levels

HiRISE image of MER rover Opportunity perched on rim of "Santa Maria" crater

Key Planetary Imager Performance Requirements

- Spatial resolution well below 1 meter
 - Resolve surface features of scientific interest
 - Observe key time variability on small spatial scales such as recurring slope lineae (RSL)
 - Recognize surface hazards such as rocks and slopes
 - Landing site selection and surface operations planning
- SNR > 50
 - Usually sufficient to reveal morphology such as scarps, lineaments or strata
- SNR > 100
 - Compositional information from multiband color images
 - Scene content in shadows
 - Low contrast images, such as seen through Mars' dusty atmosphere

Oblique View of Warm Season Flows in Newton Crater

- High-performance imagers for both planetary and Earth-orbiting missions
 - Illustrates the range of the design space
- High Resolution Imaging Science Experiment (HiRISE)
- High resolution Stereo Color Imager (HiSCI) achieved PDR-level design only
- QuickBird(QB) & WorldView(WV)
- Ralph-Multispectral Visible Imaging Camera (MVIC)
- Operational Landsat Imager (OLI)

Parameter\Instrument	HIRISE	HiSCI	QB/WV	Ralph-MVIC	OLI
Aperture (cm)	50	14	60/60	7.5	13.5*
FN	24	46	14.6	8.7	-
Nominal GSD (m)	0.3	2.0	0.6/0.5	200	15/30
$Q = \lambda FN/p$	1.40	1.01	0.82	0.45	-
FOV (deg)	1.15x0.2	1.2x0.2	2.1	5.7x0.85	~1.5x15
AIFOV (µradian)	1.0	5.0	1.37	20	21 pan
Nominal Wavelength (nm)	700	700	675	680	590 pan
Mass (kg)	64.2	25 est.	132 est.	10.5	-

* Effective aperture - not circular

Instrument Heritage – HiRISE on Mars Reconnaissance Orbiter

- Launched in August, 2005
 - In 2nd extended mission
- Largest imager orbiting another planet
- Completed more than 28,000 observations
- Returned >60 Tbits of data
- 25 cm ground sample distance (GSD) at lowest MRO altitude
- Up to 128 TDI stages
- By taking images on different orbits, HiRISE is able to collect stereo data that can be converted into 1 m/post digital terrain models
- Surprising result from HiRISE extent of seasonal variations observed, such as avalanches, vents & fans and RSL
- Successfully imaged Phoenix and Curiosity during critical EDL sequences & on surface

DTM of the MSL Rover Landing Site in Gale Crater

Polygons on Defrosting Dunes, example of Mars seasonal variability observed by HiRISE

HiRISE Camera Installed on MRO

Instrument Heritage – HiRISE Meets Critical Resolution Requirement

Victoria Crater image demonstrates HiRISE ability to resolve 1-m hazards

Instrument Heritage – HiSCI Design for Trace Gas Orbiter (TGO)

- Completed instrument PDR
 - Extended effort allowed post-PDR design of servo & controller board and focal plane electronics (FPE)
 - Wavelet compression standard implemented in FPE
- Designed to acquire the best-ever color and stereo images over significant areas of Mars
 - HiSCI would exceed by >20x the color and stereo coverage of Mars per year by HiRISE
- Key design features:
 - Four colors across entire swath width
 - Bi-directional TDI capability up to 64 stages
 - Yaw rotation drive with boresight offset
- Benefits:
 - Ability to align the TDI array from an arbitrary yaw orientation
 - Collect stereo image pairs within an orbital pass using a single instrument mechanism

Yaw rotation mechanism

The HiSCI instrument design was a joint effort between Univ. of Arizona, Ball Aerospace and Univ. of Bern (Switzerland).

Concept of operations for stereo image pair collection in a single orbital pass

- Launched in January 2006; arrives Pluto in 2015
- All-aluminum off-axis telescope construction
- Dichroic beamsplitter separates Vis-NIR from SWIR wavelengths for two focal planes:
 - Multispectral Visible Imaging Camera (MVIC)
 - 6 CCD arrays with 32 TDI stages
 - Also includes a frame transfer CCD
 - Linear Etalon Imaging Spectral Array (LEISA)
 - Focal plane (<130 K) and electronics from GSFC
- Instrument support electronics provided by SwRI

Ralph/MVIC Images of Io

1.27 μm	1.53 μm	1.88 μm	
- Shields	Contraction of the		
-	Constanting of the local division of the loc	Contraction of the second	

Ralph/MVIC composite image of Jupiter

- Planned launch in early 2013
- Earth orbiting imaging radiometer with a four-mirror unobscured telescope
- Cooled focal plane includes hybrid SiPIN and HgCdTe detectors mounted on a single CMOS ROIC
- Nine filters covering the visible to SWIR spectral bands
- From an altitude of 705 km, the GSD is 15 m for the panchromatic band and 30 m for the other bands
- Includes a calibration system incorporating built-in lamps, shutter and solar diffuser.

Key or Enabling Technologies

- Detectors
 - Most heritage visible–NIR imagers have used CCD detectors
 - CMOS (Complementary Metal-Oxide Semiconductor) arrays have now achieved performance approaching that of CCDs in some applications
 - Greater radiation tolerance
 - Simpler integration of the detector with supporting electronics
 - CMOS sensor-on-a-chip (SOC) includes built-in drive, readout and processing electronics
 - Focal plane power supply is greatly simplified
 - Very low power dissipation and fewer power supply voltages
 - Hybrid arrays allow optimization of the detector QE
 - Signal integration through on-chip or off-chip time delay integration (TDI)
- Telescope Design
 - Optimize the over-sampling ratio or 'Q': $Q = \lambda FN/pixel pitch$
 - Q<0.8 for radiometers and Q>0.8 for imagers
- Light-weighting the instrument
 - Advances in primary mirror construction and silicon carbide telescope structures
 - Greater use of low power, more capable field-programmable gate arrays, analog-to-digital converters and CMOS image sensors

- Very high resolution imagers (< 1 µrad/pixel) require quiet spacecraft
- May be achieved through passive or active vibration isolation
- Post-processing of images using attitude time sequences and overlapping pixels from the staggered detector arrays
- Image Stabilization May Be Required to Achieve Resolution Significantly Better than HiRISE
- Ball Fast Steering Mirror (FSM) located at fold mirror position can provide stabilization
 - Requirements
 - Size ~ 75 mm x 30 mm
 - Very small range of travel ~ 10 μradians
 - ~ 1000 Hz bandwidth
 - ~0.1 µradian repeatability & jitter

Ball Model BSM 45 Developed for German Space Agency Laser Communication

- Clear aperture: 45 mm diameter
- Closed loop bandwidth: up to 2,800 Hz
- Optical travel: up to \pm 2.2 deg in two axes
- Resolution: 0.2 to 10 μrad depending on travel
- Acceleration: >5,000 rad/sec²
- Size < 51 x 61 x 36 mm
- Weight < 0.25 kg

- Most limiting constraint on high-resolution imaging of planetary surfaces is reduced downlink bandwidth for science data
 - Dependant on range to Earth
- Volume of image data produced can be staggering.
 - Single maximum-size HiRISE image is 28 Gbits and requires 2.6 hours to transmit to Earth at nominal 3 Mbits/sec rate
- Pixel binning used by HiRISE to increase SNR and reduce number of pixels contained in images
- Ball developed an implementation of the CCSDS compression standard using wavelets
 - Can be incorporated into focal plane electronics or instrument control electronics
- Compression demonstrated in laboratory with focal plane subsystem development unit

- Future planetary science missions will require imagers with improved spatial resolution, sensitivity and coverage
- Designed for challenging environments
- Desirable features of such instruments include:
 - Full color coverage over the entire image area
 - 2. Bi-directional TDI (or equivalent) to facilitate stereo coverage and ease operational requirements
 - 3. On-board lossy and lossless compression
 - 4. Higher resolution or "hyper-resolution"

HiRISE FPA 3-color coverage only in center

Sub-meter resolution from orbit is readily achievable. HiRISE has set the standard and raised expectations for future narrow angle planetary imagers.

Backup Slides

- Both Earth imaging spacecraft use standard Ball High Resolution Camera (BHRC 60)
- Pushbroom instrument is capable of imaging a strip of the Earth's surface between 15 and 34 km wide depending on orbital altitude.
- Includes un-obscured three-mirror anastigmatic telescope and a focal plane array with support electronics
 - Including data compression
- One-time deployable aperture cover protects the instrument during launch and early mission operations
- Calibration lamp provides on-orbit performance tracking capability of the focal plane array.
- Because these instruments were designed for earth orbit, minimal effort was placed on weight reduction.

- Operates in the visible and NIR bands
- GSD ~ 0.5 meters panchromatic and 2.5 meters multispectral
- The instrument was designed for a 5year mission lifetime.
 - QB spacecraft & camera are in their 11th year of normal operations

BHRC 60 instrument for QuickBird spacecraft.

Raw Image Captured in Lab with FPS EDU

Source photograph was attached to a Ball-developed belt scanner

- Driving constraint of certain candidate deep-space missions is the extreme ionizing radiation environment
- Radiation affects optics, electronics and focal planes
 - Thermal control surfaces
- Radiation modeling and shielding analysis capabilities are key to finding the shielding design with the lowest possible mass and selecting appropriate components
- Radiation modeling and shielding analysis capabilities are key to finding the shielding design with the lowest possible mass and selecting appropriate components
- Ball has developed modeling tools and design capabilities as demonstrated on various programs including HiRISE, OLI, MVIC, Kepler and Deep Impact
- Ball personnel operate a radiation test facility, the InfraRed Radiation Effects Laboratory (IRREL) at the Air Force Research Laboratory (AFRL).
 - Experienced in designing focal plane test equipment and understanding the results of such tests