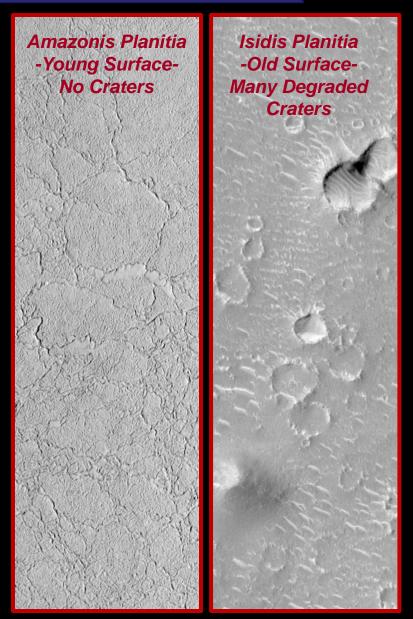

A New Approach to In-Situ K-Ar Geochronology

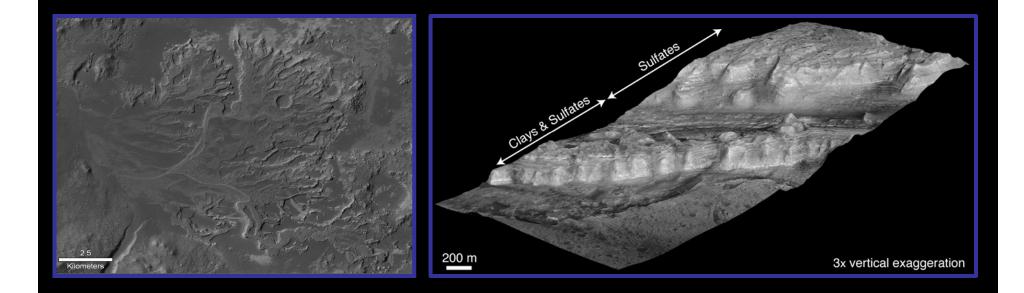
Better than 10% precision on K/Ar ages with a single analytical instrument, easily accessible Ar extraction temperatures, and no mass determination required

J.A. Hurowitz*, K.A. Farley, N.S. Jacobson, P.D. Asimow, J.A Cartwright


International Workshop on Instrumentation for Planetary Missions – October, 2012

Crater Counting Chronology

The Two Major Assumptions (weaknesses):


- 1. The lunar cratering rate can be scaled to an appropriate value for Mars
- 2. The geologically active surface of Mars (which erases and modifies craters in ways not experienced on the Moon) can be properly accounted for

Why in-situ Geochronology?

Important Questions:

- 1) When did aqueous activity occur on the Martian surface?
- 2) When did the Martian surface environment undergo major changes?
- 3) Does Mars record evidence of a late heavy bombardment?
- 4) Did Mars harbor a biosphere, and if so, exactly when?

Why in-situ Geochronology?

Important Questions:

- 1) When did aqueous activity occur on the Martian surface?
- 2) When did the Martian surface environment undergo major changes?
- 3) Does Mars record evidence of a late heavy bombardment?
- 4) Did Mars harbor a biosphere, and if so, exactly when?

These are fundamentally questions of timing. Our understanding of absolute time on Mars is currently subject to the limitations of crater counting.

K-Ar Geochronology

What?

• ${}^{40}\text{K} \rightarrow {}^{40}\text{Ar}, t_{1/2} = 1.3 \times 10^9 \text{ years}$

Why?

- Applicable to basalt and K-bearing alteration phases including jarosite and alunite
- Useful over a wide range of age (10's of Ma to many Ga)
- Involves K, a major element (rather than trace elements, e.g., Rb-Sr, Sm-Nd, U-Pb)
- Martian targets of interest are likely to be old, and accordingly, have high Ar-concentration

How are K-Ar Ages Measured on Earth?

- 1. Measure K-concentration by conventional techniques
- 2. Place a second weighed aliquot of sample into an MS
- 3. Heat sample to melting point (~1200°C⁺ for basalts)
- 4. Measure isotopic composition and amount of Ar
- 5. Calculate K-Ar age using K/Ar concentration ratio

Weighing small aliquots of sample + Heating them above 1000°C = Some of the hardest things to do with spacecraft instrumentation.

How do we surmount these problems?

A work around to designing a spacequalified high temperature oven = FLUX ASSISTED MELTING

TABLE 3

Common fluxes used in sample decomposition by fusion¹

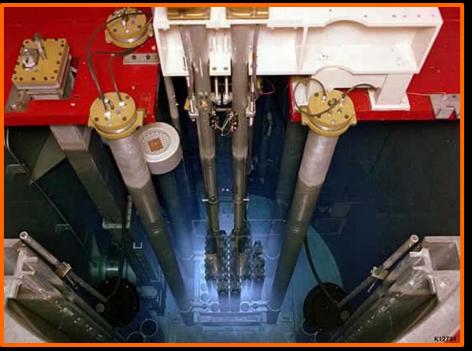
Flux	Melting point $^{\circ}C$
Lithium metaborate, LiBO ₂	845
Lithium tetraborate, $Li_2B_4O_7$	930
Sodium peroxide, Na_2O_2	480 (decomposed)
Sodium carbonate, Na ₂ CO ₃	851
Sodium hydroxide, NaOH	318
Potassium carbonate, K_2CO_3	891
Potassium hydroxide, KOH	360
Potassium pyrosulfate, $K_2S_2O_7$	419
Sodium pyrosulfate, $Na_2S_2O_7$	403
Ammonium iodide, NH ₄ I	> 300 (starts to sublime)

¹ Data from Potts (1987), Bock (1979), and Erdey et al. (1964).

SAM Pyrolysis oven can achieve 1000-1100°C

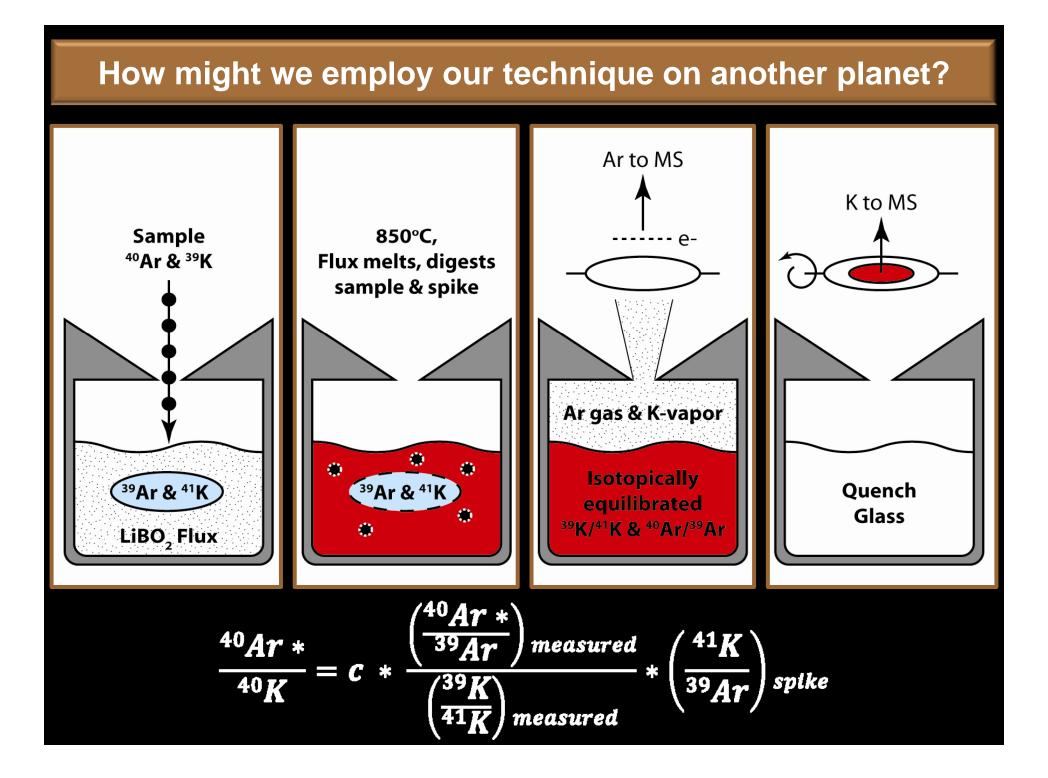
How do we surmount these problems?

A work around to designing a space-qualified high precision analytical balance = DOUBLE ISOTOPE DILUTION


- Isotope dilution is the "gold standard" for laboratory measurements, yielding typical precisions of ~1%
- We employ a double-isotope spike containing ⁴¹K and ³⁹Ar
- Here's how we cancel out the mass measurement:

$$\frac{{}^{40}Ar *}{{}^{40}K} = c * \frac{\left(\frac{{}^{40}Ar *}{{}^{39}Ar}\right) measured}{\left(\frac{{}^{39}K}{{}^{41}K}\right) measured} * \left(\frac{{}^{41}K}{{}^{39}Ar}\right) spike$$

Spike Synthesis


Caltech Petrology Lab

Oregon State University's TRIGA Reactor

Synthesized a glass containing known amounts of ⁴¹K & ³⁹Ar:

- We did this by combining synthetic albite glass (NaAlSi₃O₈) with isotopically-enriched ⁴¹KCl and melting them in a controlled atmosphere.
- This glass was irradiated, producing ³⁹Ar from the trace (~1%) ³⁹K present in the isotopically enriched ⁴¹KCI.

Our First Age Measurement

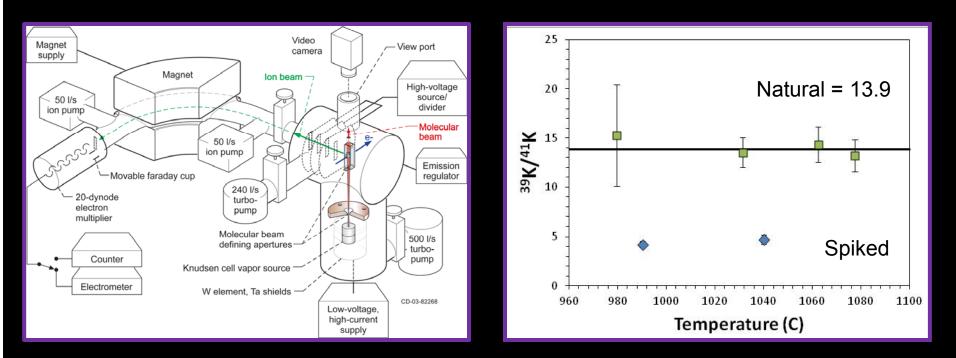
At present = no single instrument for both Ar & K measurement...

→ We are using 2 steps to perform this analysis using a basalt sample from the Viluy traps, Siberia (0.8 wt% K₂O).

AIM: Measure an age of 354±2Ma

<u>Step 1</u>:

Combine flux (150mg) + basalt (15mg) + spike glass (1.5mg), in a crucible. Melt at 950°C, measure Ar-isotopic composition on Ken Farley's noble gas mass spectrometer at Caltech.



Our First Age Measurement

<u>Step 2</u>:

FedEx the cell to NASA Glenn Research Center, measure K isotopic composition on Nate Jacobson's Knudsen Effusion Mass Spectrometer.

AIM: Measure an age of 354±2Ma

RESULT: We calculate a preliminary age of 337 ± 30 Ma

Conclusions

- Developed and verified a technique that can be implemented for a flight instrument system. Basically consists of an oven and a mass spectrometer
 → Uses a mixture of basic geochemical practices developed in the mid-20th century, including K-Ar, flux digestion & isotope dilution
- 2. No mass measurement is required, high temperatures are not required, MS only has to measure isotope ratios, and no new technology development is required.
- 3. This double isotope dilution technique should yield in-situ whole rock ages with precision better than 10%.