The Composite Infrared Spectrometer on Cassini: 15 years in Flight.

D. E. Jennings, V. G. Kunde, F. M. Flasar
and the CIRS Team
presented at the
International Workshop on Instrumentation for Planetary Missions
October 10, 2012
CIRS Development Team
Location of CIRS on Cassini
Description of Investigation

- Infrared spectroscopy of thermal emission from atmospheres, rings, and surfaces in 10–1450 cm\(^{-1}\) (1000–7 micron) region.

- Global mapping in atmospheres of the three dimensional and temporal variation of:
 - Gas composition.
 - Temperatures.
 - Dynamics.
 - Aerosols, clouds.

- Mapping of rings and icy satellite surfaces for:
 - Composition.
 - Thermal properties.
Instrument Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope Diameter(cm)</td>
<td>50.8</td>
</tr>
<tr>
<td>Interferometers:</td>
<td>FAR-IR, MID-IR</td>
</tr>
<tr>
<td>Type:</td>
<td>Polarizing, Michelson</td>
</tr>
<tr>
<td>Spectral range(cm⁻¹):</td>
<td>10 - 650, 600 - 1450</td>
</tr>
<tr>
<td>Spectral range(microns):</td>
<td>15.4 - 1000, 6.9 - 16.6</td>
</tr>
<tr>
<td>Spectral resolution(cm⁻¹):</td>
<td>0.5 to 20, 0.5 to 20</td>
</tr>
<tr>
<td>Integration time(sec):</td>
<td>2 to 50, 2 to 50</td>
</tr>
</tbody>
</table>

FOCAL PLANES:

<table>
<thead>
<tr>
<th>Focal Plane</th>
<th>Spectral range(cm⁻¹)</th>
<th>Detectors</th>
<th>Pixels</th>
<th>Pixel FOV(mrad)</th>
<th>Peak D*(cm hz¹/² W⁻¹)</th>
<th>Data Telemetry Rate(kbs)</th>
<th>Instrument Temperature(K)</th>
<th>Focal Planes 3 & 4 Temperature(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP1</td>
<td>10 - 650</td>
<td>Thermopile</td>
<td>2</td>
<td>3.9</td>
<td>4 x 10⁹</td>
<td>2, 4</td>
<td>170</td>
<td>75 - 90</td>
</tr>
<tr>
<td>FP3</td>
<td>600 - 1125</td>
<td>PC HgCdTe</td>
<td>1 x 10</td>
<td>0.273</td>
<td>2 x 10¹⁰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP4</td>
<td>1100 - 1450</td>
<td>PV HgCdTe</td>
<td>1 X 10</td>
<td>0.273</td>
<td>5 x 10¹¹</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Voyager IRIS
CIRS EM and FM
80 K Cooler for Mid-IR Detectors

Cooler supplied by Oxford
Far-IR & Mid-IR Focal Plane Assemblies

FP1 Thermocouples
Supplied by Univ. Karlsruhe
FIR FP supplied by GSFC

FP3 & FP4 HgCdTe Arrays
GSFC & CEA Astrophysique
MIR FP supplied by Oxford
CIRS Fields of Views
CIRS
Mechanical Layout
Optical Layout

Telescope

Far-Infrared Interferometer

Coupled Moving Retroreflectors

Near-Infrared Interferometer
Optical Layout
As Proposed and As Built
CIRS Interferogram

~ 46 Scans Averaged for Each Detector

Ifms Filtered for Length

Amplitude (Digital Counts)

Sample Number

Jupiter: SCET 979067816 to 979117902
Latitude -5.0 to +5.0 Degrees Emission Angle 0.0 to 45.0 Degrees
All Longitudes
Jupiter from Cassini ISS
flyby 2000-2001
Jupiter Brightness Temperature Spectrum
Jupiter Thermal Image from CIRS

Blue: Acetylene
Green: Methane
Red: Hydrogen Continuum
Saturn from Cassini ISS
arrival 2004
Saturn Brightness Temperature Spectrum
Titan from Cassini ISS
Titan Brightness Temperature Spectrum
Enceladus Thermal Stripes
CIRS used as a High-Speed Radiometer

Enceladus Close Fly-by 14 April 2012

Three 50-second Interferograms 400 rti

Same, With Deep Space Subtracted

thermal vent

zpd

expanded
CIRS Telescope Upgraded from MIRIS
CIRS Technology: Scan Mechanism

In CIRS

Vibration Testing

In CIRS

In CLARREO CDS
CIRS Technology: Reference Interferometer
diode laser, LED, cube corners
Substrate wire-grid polarizer supplied by QMWC, London
CIRS Technology: Retroreflectors

Mid-IR Cube-Corner

Reference interferometer Cube-Corner
CASSINI CIRS
COMPOSITE INFRARED SPECTROMETER
NASA/GSFC
OBS. PARIS-MEUDON QMW-LONDON UNIV. OF OXFORD CEA/ASTROPHYSIQUE