SUDA: A Dust Mass Spectrometer for **Compositional Surface** Mapping for the JUICE Mission to the Galilean Moons

S. Kempf¹, C. Briois², H. Cottin³, C. Engrand⁴, E. Grün¹, K. Hand⁵, H. Henkel⁶, M. Horányi¹, M. Lankton¹, J.-P. Lebreton², F. Postberg⁷, J. Schmidt⁸, R. Srama⁷, Z. Sternovsky¹, R. Thissen⁹, G. Tobie¹⁰, C. Szopa¹¹, and M. Zolotov¹²

¹ LASP, CU Boulder, USA, ²LPC2E, Orléans, France, ³LISA, Paris, France, ⁴CSNSM, Orsay, France, ⁵JPL, Caltech, Pasadena, USA, ⁶vH&S GmbH, Schwetzingen, Germany, ⁷IRS, Universität Stuttgart, Germany, ⁸University of Oulu, Finland, ⁹IPAG, Grenoble, France, ¹⁰LPGN, Nantes, France, ¹¹LATMOS, St-Quentin, France, ¹²Arizona State University, Tempe, USA.

Determine Surface Composition from Orbit "in-situ"

Determine Surface Composition from Orbit "in-situ"

Ejecta Clouds

Determine Surface Composition from Orbit "in-situ"

Ejecta Clouds

Ejecta Composition

Determine Surface Composition from Orbit "in-situ"

Ejecta Clouds

Ejecta Composition Ejecta Backtracking

Determine Surface Composition from Orbit "in-situ"

Ejecta Clouds

Ejecta Composition Ejecta Backtracking

The Next Best Thing to a Lander

I: Ejecta Clouds

Galileo Dust Detector: Galilean Satellites Wrapped in Dust Clouds (Krüger et al., Nature, 1999)

I: Ejecta Clouds

Galileo Dust Detector: Galilean Satellites Wrapped in Dust Clouds (Krüger et al., Nature, 1999) Almost Isotropic Clouds Composed of Surface Ejecta

Ejecta Production

Meteoroid Impacts Produce Surface Ejecta

Sremcevic et al., Icarus, 2005

Mass Yield ~ 4000 Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

Ejecta Production

Meteoroid Impacts Produce Surface Ejecta

Sremcevic et al., Icarus, 2005

Ejecta Escaping from Moon's Gravity feed Rings

Mass Yield ~ 4000 Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

Dust Composition

Cassini Dust Detector CDA

Composition of Enceladus Plume Particles

NASA/JPL/Space Science Inst.

Enceladus Dust Composition

Co-Added CDA Spectrum:

Salt-rich Geyser Ice Grains (6%)

Lab Spectrum:

Laser Dispersion of Salt Water

Postberg et al., Nature, 2009

The Enceladus Ocean

"Soda" Ocean

Rich in Carbonates

рН ~ 9

Salinity ~1% (Earth 1...4%)

Postberg et al., Nature, 2009

 Meteorite impact splashes up multiple ejecta

- Meteorite impact splashes up multiple ejecta
- Satellite moves relative to ejecta:

 $v_i = v_e - v_{sat}$ ($\approx Apex$)

CDA Measures Velocity of Charged Dust

 $v_d = 4.3 \text{ km/s}$ $R_d = 0.6 \mu \text{m}$

Dust Orbit Reconstruction

-100Rs -50Rs 0Rs 50Rs 100Rs

Dust Orbit Reconstruction

Kuiper Belt Particle

SUrface Dust Analyzer (SUDA)

- Mass Spectrometer:
 - Mass Resolution ~ 200 (600)
 - Electrostatic Mirror:
 - Parabolic Grid
 - Ring Electrodes
 - ± Polarity
- Trajectory Sensor:
 - Velocity (1% Uncertainty)

SUDA Composition Map

Bright-rayed Crater Tros on Ganymede (90 km)

SUDA Composition Map

Bright-rayed Crater Tros on Ganymede (90 km)

MC Simulation for SUDA Compositional Mapping

SUDA Will Collect

Ganymede Mission Phase:

Altitude	Impact Rate	Total Sample #
5000 km	6 per hour	13,000
500 km	7 per minute	1,000,000
200 km	29 per minute	I,400,000

I Surface Sample per 35 km²

SUDA Will Collect

Ganymede Mission Phase:

Altitude	Impact Rate	Total Sample #
5000 km	6 per hour	13,000
500 km	7 per minute	1,000,000
200 km	29 per minute	I,400,000

I Surface Sample per 35 km²

During Flybys:

Flyby	Impact Rate	Total Sample #
Europa 400 km	3 per second	5,800
Callisto 200 km	80 per minute	2,200
Ganymede 300 km	2 per second	3,800

SUDA Prototype

SUDA in Dust Accelerator

Pyroxene

Pyroxene

Anorthite $CaAl_2Si_2O_8$

Anorthite $CaAl_2Si_2O_8$

Hillier et al., GRL, 2012

Hillier et al., GRL, 2012

SUDA @ Ganymede

Water + MgSO₄

Laser-assisted dispersion spectra of MgSO4 at a concentration of 0.1 ppm in water

SUDA @ Ganymede

Argenine + Water (Cations)

Laser-assisted dispersion cation spectrum of the amino acid arginine $(C_6H_{14}N_4O_2)$ dissolved in water at a concentration of 10⁻⁴ mol/l.

SUDA Key Parameters

Resources		Best Estimate + Reserves
Mass	Instrument	7.1 kg
	Additional Shielding	4.6 kg
Power	Nominal Operation	7.IW
	Survival Mode	0.4 W
Data Rate		< 13 kbit/s

Interstellar Dust Spectrum

SUDA: Reflectron

Interstellar Dust Spectrum

SUDA: Reflectron

Interstellar Dust Spectrum

MMMMMMM

Maynow

Interstellar Dust Spectrum

Marinaman

Manne

SUDA: Reflectron

Lab: Orthopyroxene

Interstellar Dust Spectrum

MMMMMMM

Mann

SUDA: Reflectron

DOTS: Orbitrap

m/∆m<600,000

Lab: Orthopyroxene

Interstellar Dust Spectrum

MMMMMMM

May

SUDA: Reflectron

DOTS: Orbitrap

m/∆m<600,000

Fe⁺

Lab: Orthopyroxene

30Si+?

SUDA: Reflectron

DOTS: Orbitrap

m/∆m<600,000

27.98u 28.00u 28.02u 28.04u

Interstellar Dust Spectrum

Si

 O^+

 C^+

MMM MMMM

Possible Add On: DOTS

Sensitive Area: 20 cm²
Mass: 4 kg
Resolution: > 6000

