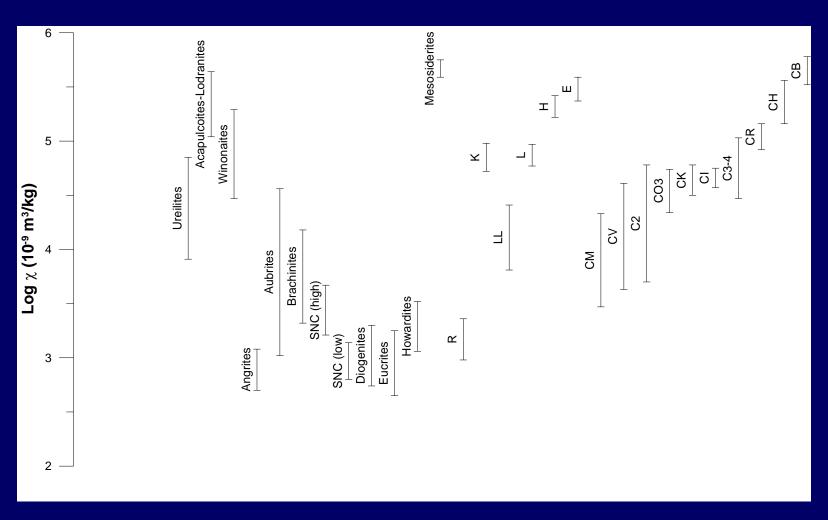
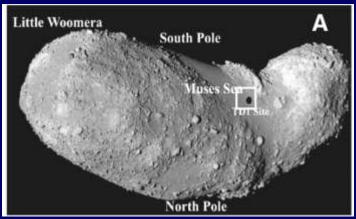


MSM – Magnetic susceptibility meter for planetary regolith composition studies


T. Kohout^{1,2}, D Britt², J. Čuda³ and MSM team

- 1. Department of Physics, University of Helsinki, Finland
- 2. Institute of Geology, Academy of Sciences of the Czech Republic
- 3. Department of Physics, University of Central Florida, USA
- 4.

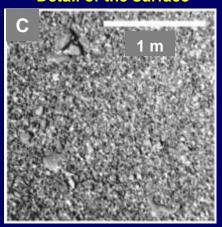
Magnetic susceptibility


- Magnetic susceptibility is defined as a ratio of the induced magnetization to the external (inducing) magnetic field χ=M_i/H
- It is a material property
- In rocks, it depends on the amount of ferromagnetic minerals (mainly metallic iron in meteorites)
- Database of meteorite magnetic susceptibility contains thousands of meteorites

Magnetic susceptibility of meteorites

Meteoritres, asteroids and regolith the scale difference

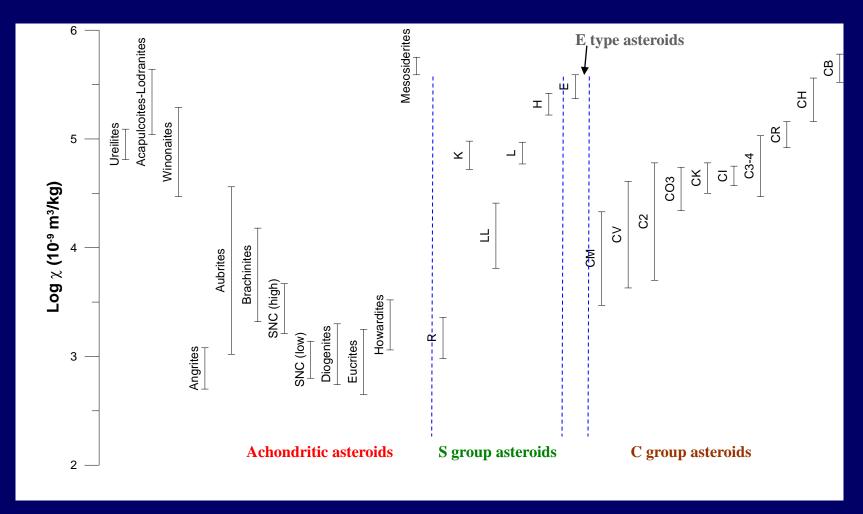
Itokawa asteroid



Hayabusa space probe

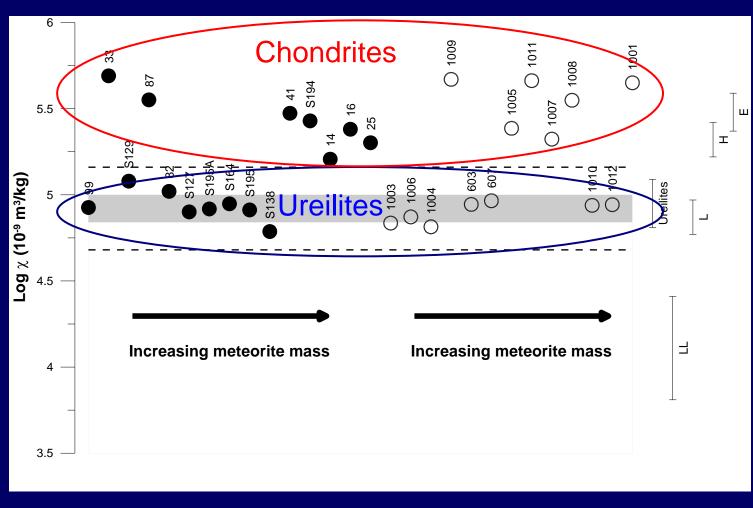
550 m

Detail of the surface



Bjurböle meteorite

5 cm


Magnetic susceptibility of meteorites and asteroids

Comparison of susceptibility measurement and reflectance spectroscopy

- Both are sensitive to asteroid composition.
- Silicates and organics can be detected in reflectance spectra.
- Presence of metallic iron, sulfides and oxides can be determined from magnetic susceptibility (quantitatively).
- Thus reflectance spectroscopy and susceptibility measurements complement each other.

Case study – Almahatta sitta meteorites and asteroid 2008 TC₃

MSM – Magnetic susceptibility meter for asteroid regolith composition studies

- MSM is a simple instrument to measure magnetic susceptibility of a the regolith.
- The design is based on the proven commercial product (SM-30) from ZH instruments.
- Dual frequency measurement option provides a possibility to detect iron nanoparticles as products of space weathering.
 - Susceptibility decay with increasing frequency is diagnostic to presence of superparamagnetic nanoparticles.

MSM specifications

- Single coil design
- Low mass (~ 100 g)
- Compact and robust design (~ 5 cm, encapsulated coil)
- Low power consumption (< 50 mW)
- Fast measurement (~2-3 s)
- Elimination of moving mechanical parts
- Dual frequency measurement option for iron nanoparticle detection
- Regolith temperature measurement option

MSM team

Tomáš Kohout

Department of Physics, University of Helsinki, Finland and

Institute of Geology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Daniel Britt

Department of Physics, University of Central Florida, Orlando, USA

Mark Bentley

Space Research Institute of the Austrian Academy of Sciences, Austria

Karri Muinonen, Juhani Huovelin, Seppo Korpela

Department of Physics, University of Helsinki, Finland

Radek Zbořil and Jan Čuda

Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic

Instrument location

On the main spacecraft

- Attached to the landing gear or sampling mechanism.
- Spot measurement during sampling.

On the lander

- Attached to the bottom of the lander in order to obtain direct contact with asteroid surface.
- In the case of roving / hopping lander, several spots across asteroid can be measured.
- Regolith temperature variations can be measured.
- Susceptibility thermal variations are diagnostic of various magnetic minerals.

MSM contribution of the instrument to planetary missions

- Primary goal of the instrument is the characterization of planetary regolith composition and its (in)homogeneity.
- Through susceptibility measurements, similar meteorite types can be determined.
- Secondary goal of the instrument is a search for iron nanoparticles (space weathering products).
- In the case the instrument is part of a lander package and is deployed on the surface for a longer period, it can be used for measurements of regolith temperature and its variations.

MSM applications

- MSM is currently ongoing one year CISI assessment study for ESA Marco Polo-R asteroid sample return mission.
- MSM will be submitted as optional payload to Marco Polo-R AO call.
- MSM was also submitted to ESA Lunar Lander CDI.

