Measuring Isotope Ratios across the Solar System

Dr. Christopher R. Webster Jet Propulsion Laboratory (JPL), California Institute of Technology

> Dr. Paul R. Mahaffy NASA Goddard Space Flight Center

International Workshop on Planetary Science Instruments 2012 NASA GSFC, Greenbelt, Maryland October 16-20, 2012

Stable Isotopic Abundances

Atomic No.	Symbol	Mass No.	Isotopic % composition	Refe
1	Н	1 2	99.9885 0.0115	Hydroge
2	Не	3 4	0.000137 99.999863	isotopes
6	С	12 13	98.93 1.07	Carboni
7	Ν	14 15	99.632 0.368	
8	0	16 17 18	99.757 0.038 0.205	Nitrogen isotopes
16	S	32 33 34 36	94.93 0.76 4.29 0.02	Oxygen isotopes
17	CI	35 37	75.78 24.22	

Reference Standards:Hydrogen
isotopesStandard Mean Ocean
Water (SMOW) from
Potomac river distributed
by NBS
Vienna-SMOWCarbon isotopesPeeDee Belemnite (PDB)
limestone in S. Carolina,
derived from marine fossilsNitrogen
isotopesAtmospheric nitrogen

Atmospheric oxygen, PDB, SMOW Canyon Diablo meteoric troilite (CDT), a sample of

troilite (FeS) from Meteor Crater in Arizona

Origin and migration of Alpine "Iceman"

1991- remains of 5,200-year old "Iceman" found in Alpine glacier 3 km above sea level – Wolfgang Muller et al. *Science*, 302, 862-866 (2003)

- Struck by an arrow, and bludgeoned to death!

"Iceman" isotopic analysis compared with local geology and hydrology

•Measured ⁸⁷Sr/⁸⁶Sr *vs*. ²⁰⁶Pb/²⁰⁴Pb, ¹⁸O/¹⁶O and ¹³C/¹²C in Iceman's teeth & bones, and ⁴⁰Ar/³⁹Ar in Iceman's intestine - compared with local geology and hydrology

• Inferred habitat and range from childhood to adulthood as <u>within 60 km SE of site</u>

•Showed Alpine valleys were <u>permanently</u> <u>inhabited</u> during terminal Neolithic.

> Photo: Alex susanna, South Tyrol Museum of Archaeology

Isotope ratios provide evidence of:

- Planetary origin and evolution
- Atmospheric escape
- Volatile recycling and transportation
- Solid-liquid-gas interactions: hydrological, carbon, nitrogen, sulfur cycles
- Climate records, atmospheric transport, cloud microphysics
- Photochemical processes
- Geophysical processes
- Radiation exposure
- Biological origin and interactions

The power of isotope ratios

Alan Hills ALH 84001 Meteorite:

 ¹⁸O/¹⁷O/¹⁶O and ¹⁵N/¹⁴N identifies it as an SNC meteorite from Mars (shergottite, nakhlite, chassignite);

K-Ar dating says meteorite is 4 billion years old;

• ⁴⁰K decays to ⁴⁰Ar that only leaks out of hot rocks, so *specifies the last time the rock cooled to solid;*

• Isotope ratios in ³He, ²¹Ne and ³⁸Ar say it was in space (cosmic ray exposure) for 10-20 million years!

•¹⁴C dating says that it sat in Antarctica for 13,000 years;

 ¹³C/¹²C and ¹⁸O/¹⁶O enrichment in its' carbonate identifies secondary alteration with isotopically-heavy water in the atmosphere;

•¹⁸O¹³CO/CO₂ establishes that the carbonate precipitated at 18 \pm 4 °C from gradually evaporating water.

Origin of the Elements

- Big Bang conditions only synthesized H, D, ³He, ⁴He and ⁷Li (Cyburt et al. 2002)- primordial compositions of galaxies and stars- and shut off at expansion period;
- Elements were formed by nuclear reactions (nucleosynthesis) in stars (*Burbidge et al., 1957*) that began 3 mins after the Big Bang and is ongoing today;
- Stars and supernovae that synthesize elements can return heavy-elementenriched matter to interstellar gas for new stars (see Truran "Meteorites, comets, and Planets", Treatise on Geochem., Elsevier, 2003);
- H-burning powers stars for ~90% of lifetime, producing He, while Heburning produces large amounts of ¹²C and ¹⁶O, and some Ne; subsequent processes produce all elements;
- In a planet-forming nebula, global abundance of water determined by O: C ratio that varies across Galactic disk- In our galaxy, should search closer to center of Milky Way, not edge (Gaidos, 2000).

Formation of the Solar System- 4.5 Gya

- Dust and gas coalesce, collapse into protosun that spins/heats up, until nuclear reactions fire up the Sun;
- As the nebula cools, volatiles condense to form outer planets like Jupiter, Saturn;

Isotopic fractionation

Atomic mass affects bond-strengths, velocities, diffusion rates

- Equilibrium fractionation mass dependent
 - Substitution of heavy isotopes reduces zero point vibrational energies
 - Strongest at low temperatures with lighter elements
 - Water vapor above liquid or ice
- Kinetic (chemical) fractionation mass dependent, directional
 - Usually good for first-order reactions
 - During evaporation, condensation Rayleigh
- Mass-independent fractionation (MIF)
 - Seen in atmospheric photochemistry of oxygen and sulfur
 - Also seen in O isotopes of CAI in meteorites like Allende

Generally expect large differences in D/H, moderate differences in d¹⁸O, significant differences in d¹³C, d¹⁵N and d¹⁷O, and small differences in d³³S

The Nice Model- oui, c'est ca!

- After dissipation of gas/dust, 4 giant planets are in compact circular orbits, surrounded by large disk of planetesimals/comets (~35 Earth masses) out to 35 AU;
- Jupiter migrates inward to 1.5 AU truncating inner disk of planetesimals at 1 AU, then slowly migrates out with pull of Saturn as inner planets form;
- Saturn migrates out until in 1:2 orbital resonance with Jupiter that completely destabilizes SS bodies;
- Orbital resonances between Jupiter and Saturn sweep up planetesimals (~100) and shift Neptune and Uranus into elliptical orbits, scattering comet/asteroid bodies toward and away from Sun;
- Solar system undergoes a 100 million year Late Heavy Bombardment period.

10

Families of Asteroids

L4 Trojans

L5 Trojans

From Jupiter's Trojans to the Kuiper Belt

- Jupiter's **Trojan asteroids** (magenta) librate around Lagrange points L4 and L5.
 - **Centaurs** (orange) orbit between Jupiter and Neptune- escaped Kuiper belt and now experience numerous interactions with giant planets- will burn up at Sun or be ejected to interstellar medium;
 - **Kuiper belt KBO's** (green) discovered 1992; outside Neptune (30 AU) and between 40-47 AU
 - "Plutinos" at 39.4 AU, orbit Sun exactly twice for every 3 Neptune orbits (as does Pluto). Some in 2:1 resonance called "Twotinos"

Oort Cloud

From comet trajectories, Oort hypothesized (1950) a spherical shell of comets (H₂O-, NH₃-, CH₄- ice) around Sun at 50,000 AU. The two main comet reservoirs are the Kuiper Belt and Oort Cloud (>1 trillion!)

Isotopic Ratios in the Solar System

- Isotopic ratios depend on the *specific* stellar source. And stars inject new elements into the ISM enriching the galaxy as a whole; isotope ratios homogenized in a hot solar nebula..... BUT.....
- Presolar material (grains) discovered to have survived in primitive meteorites (e.g. "stardust" in Murchison Meteorite) that show very different Xe, Ne and O isotope ratios [1960's and 1970's];
 - Reflect the stellar atmosphere in which the grain condensed
 - Values range 2-4 orders of magnitude difference (!) from solar for ¹⁴N/¹⁵N, ¹²C/¹³C and ¹⁶O/¹⁸O;
 - The carriers for the anomalous noble gas ratios were SiC, diamond, and graphite that were also anomalous in ALL their isotope ratios*

*E. K. Zinner, Presolar Grains, MCP, Ed. A. Davis, Elsevier 2003

Noble gas evidence for C- and H₂Otransport during Late Heavy Bombardment

- Thermo dynamical conditions in SS produced PHASE SEPARATION of solids from gases- Earth and inner planets formed by collecting solids, not gases. So, noble gases also rare!
- So what causes noble gas excess on Earth??

Mantle strongly degassed by 10²-10³
Atmospheric excess by factor of 10 cannot be from mantle (since H₂O & N not high)
Noble gases believed trapped in icy planetesimals originating >15 AU where very low temps favor trapping;
Implies 1-5 x 10¹⁶ kg of organic C added to Earth during LHB (comparable to mass of present day biosphere)- Marty & Meibom, 2007

The Xe isotope anomaly

• Solar noble gas ratios are the same as those in the original solar nebula;

• Fractionation results from subsequent atmospheric and planetary volatile evolution;

• Earth atmosphere Xe shows severe mass-dependent fractionation (4% per amu) and has 7% too much ¹²⁹Xe;

• Anomaly threatens our fundamental understanding of solar system formation;

• Is the Sun enriched in heavy Xe and why?

Terrestrial Carbon and ¹³C/¹²C Ratio

Life's catalysts (enzymes) preferentially use <u>lighter</u> <u>isotopes</u> during metabolism (easier and faster)

By physical processes (evaporation, diffusion through leaf stomata) and enzymatic reactions, plants take up ¹²C over ¹³C:

-2.7% for C₃ plants (wheat, rice, soybean, sugar beet, most plants, fossil fuels- use *Calvin-Benson* photosynthetic pathway)

-1.3% for C₄ plants (salt marshes, tropical grasses, sugar cane- use *Hatch-Slack* photosynthetic pathway)

The terrestrial CO_2 challenge: 1 ppm in 400 and 0.1 per mil d¹³C

Breath Analysis - looking for Helicobacter Pylori bacteria that cause gastritis, stomach and duodenal ulcers, and are linked to stomach cancer

www.cellsalive.com

1982: Australian doctors link ulcers to Helicobacter Pylori - spiral-shaped bacterium that lives in stomach and duodenum

- Adapts to extreme environment of deadly bath of stomach acids & enzymes by living in mucus of stomach lining and creating neutralizing, protective bases
- Immune system white cells and T-cells cannot reach lining

Urea hydrolysis: $C=O(NH_2)_2^- + H^+ + 2H_2O \rightarrow HCO_3^- + 2NH_4^+$ Urea urease bases $(CO_2 + NH_3)$

Take baseline breath CO₂ sample after fasting
Eat high calorie meal and drink ¹³C urea in water
Record ¹³C/¹²C ratio in CO₂ as function of time
H. Pylori present if ¹³C enhanced

...the old method of breath analysis

www.bizarrenews.com

Mars methane as a possible biosignature?

Observation	Method	Gale Crater
Mars Express PFS	Mars orbit	10-15 ppbv
Mumma- IRTF	Earth telescope	20-30 ppbv
SAM-TLS	Mars in situ	TBA ± 2 ppby

Mark Allen et al, Eos Trans, 2006

Ueno et al. Nature, Mar 2006 analysis of methane-bearing fluid inclusions in the early Archaean era before 2.5 Gyr ago

Amanda Tamaz/ Brad Bebout – isotopic and hydrocarbon ratios not a conclusive biogenic indicator in hypersaline environments

Oxygen isotope geochemistry

Figure and text after Criss, 1999

Emerald trade routes

- Bulk Earth is 30% oxygen, and Earth's crust & mantle contain 44 wt% oxygen;
- Diversity in d¹⁸O due to interactions of rocks with terrestrial hydrosphere (89 wt% oxygen);
- Mantle reservoir is 6‰
- Igneous rocks show wide range (-10 to 16‰) due to alteration processes: fluid-rock interactions, hydrothermal alteration.
- Sedimentary rock formation occurs in surficial environments intimately in contact with hydrosphere, with large (low temp) fractionations (10-20‰).
- High salinity seawater already has high d¹⁸O, and then marine limestones precipitate with 30‰ higher d¹⁸O than surrounding water due to large calcite-water and quartz-water fractionations at the low temps of Earths surface;

Meteorite classes, Oxygen Isotopes and Mass Dependent Fractionation

22

Oxygen Isotopes and the Formation of the Moon

- During final stages of terrestrial planet accretion 4.5 Gya, Theia (size of Mars, already differentiated into silicate mantle and metal core) collided with Earth;
- Theia's mantle was torn into orbit to become metal-poor Moon, while metal core fell to Earth;
- Oxygen isotope ratios show Earth and Theia originated from the same region of nebula

⁽From Clayton, R., 1993, Oxygen Isotopes in Meteorites, Annu. Rev. Earth Planet, Sci., v.21, p. 123.)

Figure 2 from A Heterogeneous Chemical Origin for the 16O-enriched and 16O-depleted Reservoirs of the Early Solar System Gerardo Dominguez 2010 ApJ 713 L59 doi:10.1088/2041-8205/713/1/L59

The emergence of life recorded in sulfur isotopes

Mass-independent fractionation (MIF) in S seen in sulfates of Precambrian sedimentary rocks

- UV radiation in absence of O₂ (O₃) (λ <200 nm) preferentially changes ³³S to ³²S and ³⁴S in SO₂ photolysis so that rainout from stratosphere was the main source of surface sulfate, producing a large Δ ³³S spread
- But ~ 2.2 Gy ago, with O₂ (O₃) in atmosphere, cyanobacteria became the main source of surface sulfate and Δ^{33} S spread very narrow

James Farquhar, Huiming Bao and Mark Thiemens Science, 289 p756-759 (2000)

Water Isotope Ratios

The second		
H ₂ ¹⁶ O	99.73%	
H ₂ ¹⁸ O	0.2%	1000
H ₂ ¹⁷ O	0.04%	and the second
HDO	0.03%	S
D ₂ O	0.022 x 10 ⁻ ⁴ %	

Terrestrial- Huge reservoirs connected through the hydrosphere

Potomac River from Harpers Ferry, kevin@glue.umd.edu

Martian- Isolated briny flows of partial melt

Terrestrial Rainfall, Ocean Salinity & Circulation, and the Climate Record

Investigating cirrus: lofted ice particles

•High, cold (~ -72°C) tropical cirrus over Nicaragua

C.R. Webster and A.J. Heymsfield, *Science*, 302, 1742-1745 (2002)

The Martian atmosphere shows significant early loss

- ~ 99% of the original volatile inventory was lost
 3.8 Billion years ago
- D/H is ~5 x Earth (Owen, 1988) implies Mars once had an ocean several times the size of its ice reservoir today (500 m)- several Earth oceans!
- Viking atmospheric ¹⁵N/¹⁴N nearly 60% higher than Earth- led to understanding that SNC meteorites were from Mars.

Atmospheric composition

isotope	Δ [terrestrial]	Lost to space
D/H	~5	60-74 %
³⁸ Ar/ ³⁶ Ar	1.3	50-90 %
¹³ C/ ¹² C	1.05-1.07	50-90 %
¹⁵ N/ ¹⁴ N	1.7	90 %
¹⁸ O/ ¹⁶ O	1.025	25-50 %

Jakosky & Phillips [2001]

D/H ratio and the Origin of Earth's water....

Were ices stable enough near habitable zone? OR was water delivered by stable hydrated silicates?

The Emergence of Tunable Laser Spectrometers

ratios

Mass Spectrometer:

- Surveys all gases;
- Essential for noble gases
 & complex organics;
- Mass interferences in D/H, CO/N2, 13CO2, methane, ammonia and water.

Tunable Laser Spectrometer:

- Targets specific gases- no interference;
- Direct, non-invasive, high sensitivity to water, methane, other gases;
- Carbonates, hydrates to 10⁻⁹ wt%
- High precision ~0.1% CHNOS isotope

Laser Absorption Spectroscopy

32

TLS flight hardware

SAM is the most sophisticated planetary instrument suite ever flown

- Quadrupole Mass Spectrometer
- Tunable Laser Spectrometer
- 6 GC columns
- Sample Manipulation System
- 2 pyrolysis cells
- 16 Gas Processing manifolds
- 2 high conductance valves
- 52 microvalves
- 51 gas line heaters
- Combustion & cal gases
- 2 scrubbers and 2 getters
- hydrocarbon trap
- 2 turbomolecular pumps
- 2 He tanks at 2400 psi
- 4 heat pipes
- Electronics stack
- ~ 600 m of harness wire
- Solid Sample Inlet Tubes
- Thermal shields

SAM PI is **Paul Mahaffy**, NASA GSFC GC lead is **Michel Cabane**, Univ. Paris TLS lead is **Chris Webster**, JPL

TLS enhanced in SAM

• The SAM suite **enables TLS operation** in providing power, valving, plumbing, evacuation, cal gas, etc.

 SAM enables EGA and combustion production for TLS analysis of evolved gases from solid samples;

 SAM enables TLS methane ¹³C/¹²C isotope measurement and ultra-low methane detection (~50 times) through methane enrichment capability;

 SAM enables atmospheric water isotope measurements by water enrichment that enhances TLS detection by ~50 times;

SAM-TLS will measure CH_4 , H_2O , CO_2 and their isotope ratios

Wavelength	Region	Capability
3.27 µm	Methane	CH ₄ to 1 ppb (~20 ppt in SAM) d^{13} C to 10 ‰
2.785 µm	CO ₂	CO_2 to 0.2 ppm $d^{13}C$ to 2 ‰ $d^{18}O$ to 1-2 ‰ $d^{17}O$ to 3 ‰
2.783 µm	H ₂ O	H_2O to 0.1 ppm dD to 2 ‰ d ¹⁸ O to 3 ‰ d ¹⁷ O to 5 ‰

TLS LOD is~10-9 wt% H2O in rocksTLS LOD is~10-8 wt% C in rocks- Will measureδ13C of CO2 from organics release/
combustion

Gale Crater- a record of past aqueous environments?

Curiosity will land on the fl oor of Gale crater (inside the arc) and could rove along the green line, climbing across layered sediments containing clays and sulfates (denoted by their spectral colors).- Kerr, Science, July 2011.

- Gale crater is late Noachian (~4Gya), floor deposits early Hesperian (~3.5Gya)
- 5 km of layered sediments/strata record sequences of aqueous habitable environments over a long time period;
- Strata contain hydrous minerals
 - sulfates from volcanic SO2 and water
 - phyllosilicates formed in water-rich alkaline environment;
- Phyllosilicates include smectites that would best preserve any organics.....

D/H as discriminator of atmosphere, crust, mantle - a tracer of Mars evolution

D/H reservoirs on Mars

Studies of Shergottite meteorites by T. Usui (NASA Johnson);
Will SAM-TLS see same record across Gale Crater?

T. Usui

Martian water-rock interactions will be revealed in H, O isotope ratios

- Rapid equilibration of CO₂ with liquid water will exchange ¹⁸O
- In rocks, H is minor and O is major component, so Water/Rock (W/R) ratio: (W/R)Hydrogen >> (W/R)Oxygen
- Thus, small amounts of water can produce significant change in δD of a rock;
- e.g. L-shaped trend, here a product of profound hydrothermal alteration event during Eocene time when exchange with hot infiltrating fluids derived from low meteoric waters produced large changes in δD, but little in δ¹⁸O.

Figure and text after Robert Criss, 1999

40

Reconciling Mars CO₂ isotopes with the meteorite record

- Atmospheric CO₂ produces carbonates enriched in 13C
- Meteorites show d13C ~50‰, but Phoenix reports atmospheric d13C of -2.5‰

Will Gale Crater show evidence of high d¹³C carbonates?

Clumped Isotopes (${}^{18}O{}^{13}C{}^{16}O$): Carbonates in the Martian meteorite AH84001 formed at 18 ± 4 °C in a near-surface aqueous environment - Itay Halevy, Woodward Fischer, John Eiler

Summary Requirements

• Carefully identify target body-specific requirements !

Measurement	New bodies*	Earth, Mars, meteorites
Elemental abundances	10%	2%
Mineralogical components	10%	5%
Noble gas isotope ratios	5%	3%
D/H	30%	1%
δ13C	10 ‰	0.1 ‰
δ13C biological	1	0 ‰
δ18Ο, δ17Ο	20 ‰	0.2 ‰
δ15Ν	20 ‰	0.2 ‰
δ34S, δ33S	10 ‰	0.2 ‰

* Inner planets (not Earth), outer planets, satellites, primitive bodies

Where Cavity Ringdown Detection would be of benefit

- Earth stratospheric water isotope ratios;
- S isotope ratios in (inherently weak) H₂S, SO₂ (e.g. Venus);
- Methane isotope ratios (C, H) in *low abundance* methane (e.g. Mars); *not* Saturn, Titan;
- CO and CO₂ isotopes in *low-abundance* regions (e.g. Saturn, Uranus);
- Clumped is otopic measurements in CO₂ (e.g. ¹⁸O¹³C¹⁶O for Mars environment evolution, primitive body origins;
- ¹⁷O measurements to 0.1 per mil to identify sources

- Will SAM provide the *direct connection* of the SNC meteorites with Mars and establish the timeline of the Martian carbon cycle?
- Will SAM confirm a watery past for Mars?
- Do values of 180/160, 13C/12C, and D/H on the surface of primitive bodies reveal planetary migration and evolution consistent with the Nice model?
- Do all main-belt comets show high D/H values and better establish the origin of Earth's water?
- What differences from Jupiter do the elemental and isotopic compositions of Saturn and Uranus reveal?

Isotopic ratios offer the key to unraveling the complex dynamics and chemistry associated with the formation and evolution of planetary bodies (planets, satellites and primitive bodies) including differentiation by retaining a fingerprint record of temperature history, radiation environment and sun-distance location through equilibrium, disequilibrium, and temperature-dependent chemical processes.

