

Gradaud Primitive Object Volatile Explorer (PrOVE): Waypoints to Comets

CU

T. Hewagama^{1,2}, S. Aslam², P. Clark³, M. Daly⁴, L. Feaga¹, D. Folta², N. Gorius^{5,2}, T. Hurford², J. Kolasinski², T. Livengood^{1,2}, B. Malphrus⁶, M. Mumma², C. Nixon², K. Parker², C. Proulx⁷, J. Sunshine¹, S. Thompson², G. Villanueva²

¹U. of Maryland, ²NASA Goddard Space Flight Center, ³NASA Jet Propulsion Lab, ⁴York U., ⁵Catholic U., ⁶Morehead State U., ⁷Institut National d'Optique

Introduction

Comets are **primordial bodies**, and inform us about the **origins** of our Solar System and the **delivery of water and organics** to Earth.

The CO₂ and organic abundance (w.r.t H₂O) are prime metrics in establishing their formation origin and evolution.

Prove will measure CO₂ outgasssing from the cometary nucleus.

Little is known about the second most abundant molecule in comets (CO₂). CO₂ cannot be measured directly from ground; only Akari, Deep Impact, Rosetta, Spitzer, and NEOWISE have measurements. Future: JWST, OSIRIS-REx.

- Deep Impact investigation of 103P/Hartley 2 showed CO₂ sublimation driving comet activity. The spatial scale shown in red boxes (275 m) can be matched by a CubeSat mission.
- Maps of CO₂, water, organics, and thermal structure will provide information on comet volatile content, density, structural stability and outgassing.

PrOVE is a low-cost design with critical **reconnaissance** capabilities that can be deployed in multiple copies to characterize new or periodic comets using a uniform set of measurements.

Spacecraft

- Under a PSDS3 grant, a 12U deep space bus is being evaluated for missions to comets within 0.4 AU of Earth.
- Early design was for a 6U Cubesat bus (*left*) for a mission to 46P/Wirtanen (December-2018 apparition with 0.1 AU of Earth). Spacecraft was based on 6U deep space bus developed by Morehead State University for Lunar IceCube.
- Propulsion options: Busek BIT-3
- Communications: Iris v.2 transponder

SmallSats suited for comet reconnaissance

- Rapid development to launch is possible.
- Frequent Rideshare opportunities.
- Cost efficient for focused science missions.
- Low cost spacecraft can reside in a parked orbit and wait for a **new** comet with pristine primordial composition.

Preparing for Opportunity

To mitigate launch delay risk, we propose to park the spacecraft in a parking orbit – a Waypoint. At a navigationally appropriate time, the spacecraft will launch on the cruise phase en route to the comet and the flyby mission. In the PSDS3 study, we are investigating these waypoints.

Science Instruments

Science Objectives

Prove will perform a close flyby of a Jupiter-family or new comet near perihelion when volatile activity is maximum, to probe the origin of the nucleus and the formation and evolution of our Solar System.

- Investigate chemical heterogeneity of nucleus by quantifying volatile species abundances and how these depend on solar insolation;
- •<u>Map</u> spatial distribution of volatiles, especially CO₂ (which cannot be measured from ground based telescopes), and determine any variations;
- <u>Determine</u> the frequency and distribution of outbursts.

Prove Comet Camera (ComCAM)
has seven filter channels. Four
channels will image the
distribution of molecular
emission at

- 2.7 μm (H2O)
- 3.3 μm (organics)
- 4.3 μm (CO2)4.7 μm (CO).
- The 4.0 μm channel control for nonmolecular continuum, and 7-10 μm and 8-14 μm channels measure thermal structure (not shown here).

ComCAM 80 mm aperture optical layout is a costeffective solution that meets point spread function and modulation transfer function requirements. ComCAM will fit neatly into a 1.3U volume.

ComCAM will be built around the INO μ XCAM OEM microbolometer sensor. (right) Example of Multi-Zone filters manufactured (left). Seven discrete filters matching the above spectral bands will be integrated onto the sensor focal plane. The optical assemblies are not shown.

Mission Concept

Mission Overview

- PrOVE will be deployed from any launch platform.
- •Using onboard propulsion, *PrOVE* will navigate to a waypoint in space.
- PrOVE will remain at the waypoint until commanded to a transfer trajectory to intercept a known comet as it approaches encounter or hibernate indefinitely until an opportunistic new comet is identified and transfer orbit is uploaded.
- The *PrOVE* trajectory will be designed for a flyby encounter the comet at the ascending/descending node to mitigate large off-plane distances.

Acknowledgements

We acknowledge the support of

•NASA Planetary Science Deep Space SmallSat Studies (PSDS3) program
•NASA/GSFC