

CubeSat Buses and Architectures

Dellingr-X: GSFC's solution to enable planetary science missions

Colby Goodloe <u>colby.s.goodloe@nasa.gov</u> 301-286-2444

Mike Johnson, Larry Kepko, Chuck Clagett, Luis Santos, Tom Johnson

DDARD SPACE FLIGHT CENTER

Do today's CubeSat systems meet the unique needs of planetary science missions?

Mission Concepts

- Hitchhiker
 - Relies on primary spacecraft for transportation, then operates independently
- Daughtership
 - Relies on primary spacecraft for transportation, communication relay, and sometimes navigation
- Free flyer
 - Makes its own way from launch vehicle
- Probe/Lander/Penetrator
 - Interacts with planetary body in a way deemed too risky for primary spacecraft

Planetary CubeSat Mission Challenges

Radiation	Surviving and performing in high radiation environments
Lifetime	Surviving long duration cruises
Ride opportunities	Achieving higher reliability because the fly- learn-refly philosophy doesn't hold
Power	Generating solar power beyond 1 AU Increasing capability for telecom and propulsion
Thermal	Dissipating increased power from subsystems, inside 1AU, or near high albedo planetary bodies
Telecom	Closing direct to earth links over large distances Crosslinking to relay mothership
GN&C	Tracking and navigating outside GPS Desaturating wheels
Propulsion	Increasing delta-V for orbit insertions and exploration

Bus Options -> Dellingr-X

- COTS e.g. Blue Canyon, Clyde Space, Pumpkin, Tyvak, GomSpace
 - Primarily designed for LEO, shorter mission lifetimes, and lower reliability/robustness
 - Evolving but big jump needed for typical planetary mission architectures
- Fully customized new build
 - Most optimal technical solution for a particular mission but usually expensive
- Dellingr GSFC standard architecture to control cost/schedule
 - Dellingr-S designed for LEO using primarily COTS (available)
 - Dellingr-X high reliability bus for harsher environments (in development)

Credits: Blue Canyon Technologies http://bluecanyontech.com/xb6-spacecraft/

Dellingr

Dellingr-X Simplified System Architecture

Expected performance enables a significant portion of planetary missions while balancing cost

Radiation	Lifetime	Power	Thermal	Telecom	GN&C	Propulsion
> 80krad	3+ years	50-100W	Optional radiators	S or X band DSN compatible	Optical navigation Autonomous maneuver planning and execution	<100m/s cold gas, >1000m/s electric

Development Flow and Mission Infusion

GODDARD SPACE FLIGHT CENTER

Summary and Key Takeaway

- GSFC is addressing the unique challenges of planetary science missions with Dellingr-X
 - Extended capabilities meet the most common performance requirements
 - High reliability and robust design built from the ground up to perform in harsh environments
- Controlling cost
 - Flexible, reusable bus design
 - Tailored and standardized processes and testing
 - Investments in infrastructure and a flatsat
- Efficient customization for unique mission needs taking advantage of GSFC expertise
- We really want your feedback and engagement to make sure we hit the mark and meet your needs

Contacts and Acronyms

- Colby Goodloe Dellingr-X Systems Architecture Lead
 - <u>colby.s.goodloe@nasa.gov</u>
 - 301.286.2444
- Charles Clagett Dellingr Project Manager
 - <u>charles.e.clagett@nasa.gov</u>
 - 301.286.2438
- Luis Santos Dellingr Deputy Project Manager
 - luis.h.santos@nasa.gov
 - 301.286.5381
- Michael Johnson AETD Chief Technologist
 - michael.a.johnson@nasa.gov
 - 301.286.5386
- Larry Kepko SSPO Chief Scientist plus others
 - <u>larry.kepko@nasa.gov</u>
 - 301.286.2728
- Tom Johnson SSPO Chief
 - <u>thomas.e.johnson@nasa.gov</u>
 - 757.824.2560

- ACS Attitude Control System
- AETD Applied Engineering & Technology Directorate
- AU Astronomical Unit
- BOWTIE Bubbles Observed Within The IonospherE
- C&DH Command and Data Handling
- CeREs Compact Radiation Belt Explorer
- cFE/cFS core Flight Executive/core Flight Software
- COTS Commercial Off the Shelf
- CSS Coarse Sun Sensor
- FPGA Field Programmable Gate Array
- FSS Fine Sun Sensor
- GN&C Guidance, Navigation, & Control
- GPS Global Positioning System
- GSFC Goddard Space Flight Center
- GTO Geostationary Transfer Orbit
- LEO Low Earth Orbit
- PSE Power Supply Electronics
- RWA Reaction Wheel Assembly
- SSPA Solid State Power Amplifier
- SSPO Small Satellite Project Office
- STF-1 Simulation To Flight 1

ODDARD SPACE FLIGHT CENTER